Nanocomposites based on chitosan-polyvinyl alcohol (CS-PVA) and graphene oxide (GO) were prepared by casting the stable aqueous mixture of the components. SEM, TEM and X-ray diffraction showed that graphene oxide is largely dispersed on molecular scale within CS-PVA matrix. FTIR investigation indicated the occurrence of some interaction between graphene oxide nanosheets and CS-PVA. The obtained composites are mechanically strong and exhibit improved thermal stability. By addition of 6 wt.% GO within CS-PVA blend, the elastic modulus increased over 200%. The cell viability and proliferation results showed that MC3T3-E1 mouse osteoblastic cells can adhere and developed on the CS-PVA/GO composite films. A significant proliferation potential was displayed by the cells in contact with CS-PVA/GO 6 wt.%. Graphene oxide reinforced CS-PVA with high mechanical and bioactive properties are potential candidates for tissue engineering.
Keywords: Cells culture; Chitosan–polyvinyl alcohol; Graphene oxide; Mechanical strength; Nanocomposite.
Copyright © 2013 Elsevier Ltd. All rights reserved.