The rhodium-catalyzed formation of all-carbon spirocenters involves a decarbonylative coupling of trisubstituted cyclic olefins and benzocyclobutenones through CC activation. The metal-ligand combination [{Rh(CO)2 Cl}2 ]/P(C6 F5 )3 catalyzed this transformation most efficiently. A range of diverse spirocycles were synthesized in good to excellent yields and many sensitive functional groups were tolerated. A mechanistic study supports a hydrogen-transfer process that occurs through a β-H elimination/decarbonylation pathway.
Keywords: CC activation; decarbonylation; homogeneous catalysis; rhodium; spirocycles.
Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.