Objective: Diesel exhaust particulate (DEP), a major component of urban air pollution, has been linked to atherogenesis and precipitation of myocardial infarction. We hypothesized that DEP exposure would increase and destabilise atherosclerotic lesions in apolipoprotein E deficient (ApoE-/-) mice.
Methods: ApoE-/- mice were fed a 'Western diet' (8 weeks) to induce 'complex' atherosclerotic plaques, with parallel experiments in normal chow fed wild-type mice. During the last 4 weeks of feeding, mice received twice weekly instillation (oropharyngeal aspiration) of 35 μL DEP (1 mg/mL, SRM-2975) or vehicle (saline). Atherosclerotic burden was assessed by en-face staining of the thoracic aorta and histological examination of the brachiocephalic artery.
Results: Brachiocephalic atherosclerotic plaques were larger in ApoE-/- mice treated with DEP (59 ± 10%) than in controls (32 ± 7%; P = 0.017). In addition, DEP-treated mice had more plaques per section of artery (2.4 ± 0.2 vs 1.8 ± 0.2; P = 0.048) and buried fibrous layers (1.2 ± 0.2 vs 0.4 ± 0.1; P = 0.028). These changes were associated with lung inflammation and increased antioxidant gene expression in the liver, but not with changes in endothelial function, plasma lipids or systemic inflammation.
Conclusions: Increased atherosclerosis is caused by the particulate component of diesel exhaust producing advanced plaques with a potentially more vulnerable phenotype. These results are consistent with the suggestion that removal of the particulate component would reduce the adverse cardiovascular effects of diesel exhaust.