Desmethyl Macrolides: Synthesis and Evaluation of 4,8-Didesmethyl Telithromycin

ACS Med Chem Lett. 2012 Dec 12;3(12):1013-1018. doi: 10.1021/ml300230h.

Abstract

There is an urgent need for novel sources of antibiotics to address the incessant and inevitable onset of bacterial resistance. To this end, we have initiated a structure-based drug design program that features a desmethylation strategy (i.e., replacing methyl groups with hydrogens). Herein we report the total synthesis, molecular modeling and biological evaluation of 4,8-didesmethyl telithromycin (5), a novel desmethyl analogue of the third-generation ketolide antibiotic telithromycin (2), which is an FDA-approved semisynthetic derivative of erythromycin (1). We found 4,8-didesmethyl telithromycin (5) to be eight times more active than previously prepared 4,8,10-tridesmethyl congener (3) and two times more active than 4,10-didesmethyl regioisomer (4) in MIC assays. While less potent than telithromycin (2) and paralleling the observations made in the previous study of 4,10-didesmethyl analogue (4), the inclusion of a single methyl group improves biological activity thus supporting its role in antibiotic activity.

Keywords: antibiotic resistance; desmethyl analogues; ketolide antibiotics; molecular modeling; telithromycin; total synthesis.