Alzheimer's disease is neuropathologically characterized by the accumulation of amyloid-β protein into senile plaques that are sites of chronic inflammation involving reactive microglia, astrocytes, and proinflammatory molecules, such as interleukin-1β and tumor necrosis factor-α. The human CCAAT/enhancer-binding protein (CEBP) delta (CEBPD) is known to be induced in many inflammation-related diseases. In Alzheimer's disease, this protein is responsive to amyloid-β and proinflammatory cytokines in astrocytes. However, the functional role of CEBPD in astrocytes remains largely unclear. In this study, we show that CEBPD is upregulated by interleukin-1β through the mitogen-activated protein kinase p38 (MAPKp38) signaling pathway and phosphorylated by glycogen synthase kinase (GSK)-3β at Ser167 in astrocytes. CEBPD in astrocytes is associated with microglia activation and migration in amyloid precursor protein transgenic mice (AppTg) mice. We further identified that the monocyte chemotactic protein-1, a chemoattractive factor, and migration factors matrix metalloproteinase-1 and -3 are responsive to GSK3β-mediated CEBPD Ser167 phosphorylation. Our results revealed the novel regulation of LiCl on astrocytes and that GSK3β-mediated CEBPD phosphorylation in astrocytes plays an important role in the activation of microglia.
Keywords: Alzheimer's disease; Astrocytes; CEBPD; GSK3β; Microglia.
Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.