Differential response of regulatory and conventional CD4⁺ lymphocytes to CD3 engagement: clues to a possible mechanism of anti-CD3 action?

J Immunol. 2013 Oct 1;191(7):3694-704. doi: 10.4049/jimmunol.1300408. Epub 2013 Aug 28.

Abstract

Several clinical trials have shown anti-CD3 treatment to be a promising therapy for autoimmune diabetes, but its mechanism of action remains unclear. Foxp3(+) regulatory T cells (Tregs) are likely to be involved, but through unknown mechanistic pathways. We profiled the transcriptional consequences in CD4(+) Tregs and conventional T cells (Tconvs) in the first hours and days after anti-CD3 treatment of NOD mice. Anti-CD3 treatment led to a transient transcriptional response, terminating faster than most Ag-induced responses. Most transcripts were similarly induced in Tregs and Tconvs, but several were differential, in particular, those encoding the IL-7R and transcription factors Id2/3 and Gfi1, upregulated in Tregs but repressed in Tconvs. Because IL-7R was a plausible candidate for driving the homeostatic response of Tregs to anti-CD3, we tested its relevance by supplementation of anti-CD3 treatment with IL-7/anti-IL-7 complexes. Although ineffective alone, IL-7 significantly improved the rate of remission induced by anti-CD3. Four anti-human CD3 mAbs exhibited the same differential effect on IL-7R expression in human as in mouse cells, suggesting that the mechanism also underlies therapeutic effect in human cells, and perhaps a rationale for testing a combination of anti-CD3 and IL-7 for the treatment of recent-onset human type 1 diabetes. Thus, systems-level analysis of the response to anti-CD3 in the early phase of the treatment demonstrates different responses in Tregs and Tconvs, and provides new leads to a mechanistic understanding of its mechanism of action in reverting recent-onset diabetes.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Antibodies, Monoclonal / immunology
  • Antibodies, Monoclonal / metabolism
  • Antibodies, Monoclonal / pharmacology
  • CD3 Complex / immunology*
  • CD3 Complex / metabolism
  • CD4-Positive T-Lymphocytes / drug effects
  • CD4-Positive T-Lymphocytes / immunology*
  • CD4-Positive T-Lymphocytes / metabolism
  • Cells, Cultured
  • Drug Synergism
  • Gene Expression Regulation / drug effects
  • Humans
  • Interleukin-7 / pharmacology
  • Mice
  • Mice, Transgenic
  • Protein Binding
  • Receptors, Interleukin-7 / genetics
  • Receptors, Interleukin-7 / metabolism
  • T-Lymphocytes, Regulatory / drug effects
  • T-Lymphocytes, Regulatory / immunology*
  • T-Lymphocytes, Regulatory / metabolism

Substances

  • Antibodies, Monoclonal
  • CD3 Complex
  • Interleukin-7
  • Receptors, Interleukin-7

Associated data

  • GEO/GSE48210