Glucocorticoid receptor antagonist and siRNA prevent senescence of human bone marrow mesenchymal stromal cells in vitro

Cell Tissue Res. 2013 Nov;354(2):461-70. doi: 10.1007/s00441-013-1700-0. Epub 2013 Aug 21.

Abstract

We investigate the effects mediated by glucocorticoid (GC) receptor (GR) blockage by using RU486, a GR antagonist and GR short interfering RNA (GR siRNA) on the proliferative and differentiation capabilities of human bone marrow mesenchymal stromal/stem cells (MSCs) and on their senescence and antioxidant levels during extended in vitro culture. Treatment with either RU486 or GR siRNA for a 7-day period significantly increased the proliferation of MSCs and their osteogenic capabilities, as reflected by an increase in alkaline phosphatase (ALP) levels after differentiation. Following 4 weeks of treatment, MSCs improved or maintained their proliferation rates, whereas control MSCs exhibited decreased proliferation. Although all MSCs exhibited reduced osteogenic potential after 4 weeks of in vitro culture, the MSCs treated with GR inhibitors showed higher ALP levels than untreated MSCs on being subjected to osteogenic differentiation. Such treatment also significantly down-regulated the adipogenic capabilities of MSCs. Telomere lengths and the activities of telomerase and superoxide dismutase of MSCs treated with either RU486 or GR siRNA appeared to be higher than those detected in controls. These results demonstrate that the blockage of effects mediated by the GCs normally found in fetal bovine serum might postpone senescence of these cells by up-regulating their antioxidant levels. Our data suggest that the blocking of the effects mediated by GCs might extend the lifespan of endogenous MSCs in patients who have elevated GC levels as a consequence of advancing age or estrogen depletion.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Bone Marrow Cells / cytology
  • Bone Marrow Cells / drug effects
  • Bone Marrow Cells / metabolism
  • Cell Differentiation / drug effects
  • Cell Proliferation / drug effects
  • Cellular Senescence / drug effects*
  • Female
  • Humans
  • Male
  • Mesenchymal Stem Cells / cytology*
  • Mesenchymal Stem Cells / drug effects*
  • Mesenchymal Stem Cells / metabolism
  • Mifepristone / pharmacology
  • RNA Interference*
  • RNA, Small Interfering / genetics
  • Receptors, Glucocorticoid / antagonists & inhibitors*
  • Receptors, Glucocorticoid / genetics*
  • Receptors, Glucocorticoid / metabolism
  • Young Adult

Substances

  • RNA, Small Interfering
  • Receptors, Glucocorticoid
  • Mifepristone