A transgenic tri-modality reporter mouse

PLoS One. 2013 Aug 9;8(8):e73580. doi: 10.1371/journal.pone.0073580. eCollection 2013.

Abstract

Transgenic mouse with a stably integrated reporter gene(s) can be a valuable resource for obtaining uniformly labeled stem cells, tissues, and organs for various applications. We have generated a transgenic mouse model that ubiquitously expresses a tri-fusion reporter gene (fluc2-tdTomato-ttk) driven by a constitutive chicken β-actin promoter. This "Tri-Modality Reporter Mouse" system allows one to isolate most cells from this donor mouse and image them for bioluminescent (fluc2), fluorescent (tdTomato), and positron emission tomography (PET) (ttk) modalities. Transgenic colonies with different levels of tri-fusion reporter gene expression showed a linear correlation between all three-reporter proteins (R(2)=0.89 for TdTomato vs Fluc, R(2)=0.94 for Fluc vs TTK, R(2)=0.89 for TdTomato vs TTK) in vitro from tissue lysates and in vivo by optical and PET imaging. Mesenchymal stem cells (MSCs) isolated from this transgenics showed high level of reporter gene expression, which linearly correlated with the cell numbers (R(2)=0.99 for bioluminescence imaging (BLI)). Both BLI (R(2)=0.93) and micro-PET (R(2)=0.94) imaging of the subcutaneous implants of Tri-Modality Reporter Mouse derived MSCs in nude mice showed linear correlation with the cell numbers and across different imaging modalities (R(2)=0.97). Serial imaging of MSCs transplanted to mice with acute myocardial infarction (MI) by intramyocardial injection exhibited significantly higher signals in MI heart at days 2, 3, 4, and 7 (p<0.01). MSCs transplanted to the ischemic hindlimb of nude mice showed significantly higher BLI and PET signals in the first 2 weeks that dropped by 4(th) week due to poor cell survival. However, laser Doppler perfusion imaging revealed that blood circulation in the ischemic limb was significantly improved in the MSCs transplantation group compared with the control group. In summary, this mouse can be used as a source of donor cells and organs in various research areas such as stem cell research, tissue engineering research, and organ transplantation.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Actins / genetics
  • Actins / metabolism
  • Animals
  • Cell Tracking / methods*
  • Chickens / genetics
  • Founder Effect*
  • Gene Expression Regulation
  • Genes, Reporter*
  • Hindlimb / blood supply
  • Hindlimb / pathology
  • Ischemia / pathology
  • Ischemia / therapy
  • Luminescent Measurements
  • Mesenchymal Stem Cell Transplantation*
  • Mesenchymal Stem Cells / cytology
  • Mesenchymal Stem Cells / physiology
  • Mice
  • Mice, Nude
  • Mice, Transgenic / genetics*
  • Microscopy, Fluorescence
  • Myocardial Infarction / pathology
  • Myocardial Infarction / therapy
  • Positron-Emission Tomography
  • Promoter Regions, Genetic
  • Solanum lycopersicum / chemistry
  • Solanum lycopersicum / genetics

Substances

  • Actins