We propose a novel hidden Markov model (HMM) for parameter estimation in hospital transmission models, and show that commonly made simplifying assumptions can lead to severe model misspecification and poor parameter estimates. A standard HMM that embodies two commonly made simplifying assumptions, namely a fixed patient count and binomially distributed detections is compared with a new alternative HMM that does not require these simplifying assumptions. Using simulated data, we demonstrate how each of the simplifying assumptions used by the standard model leads to model misspecification, whereas the alternative model results in accurate parameter estimates.
Keywords: detection process; observation model.
© The Authors 2013. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.