In order to characterize the tobacco-derived mutagens excreted in the urine of tobacco smokers, 32P-postlabelling techniques were used to examine DNA adducts formed from these mutagens with calf thymus DNA in the presence of a metabolic activation system (rat liver S9, Aroclor 1254-induced, with or without acetyl coenzyme A). Using either nuclease P1 or butanol extraction procedures, four-six and three spots, respectively, were reproducibly found on the autoradiograms in the case of the urine extract from two smokers of black tobacco. Using the urinary extract from a non-smoker, only three faint spots were detected after nuclease P1 enrichment. DNA adducts produced in smokers' urine were then compared with those formed by four N-hydroxyarylamines, N-hydroxy-2-amino-3,8-dimethyl-3H-imidazo[4,5-f]quinoxaline, N-hydroxy-2-amino-3-methyl-imidazo[4,5-f]quinoxaline, N-hydroxy-2-naphthylamine and N-hydroxy-4-aminobiphenyl. Visual inspection revealed that none of the reference aromatic amines contributed to the adduct pattern produced by the urinary mutagen(s). However, primary aromatic amines are mainly implicated as urinary mutagens because: (i) they produce frameshift mutations in Salmonella typhimurium strains, (ii) they are easily extractable with blue cotton and (iii) their mutagenicity is abolished by a nitrite treatment procedure for deamination.