The Arabidopsis LRR-RLK, PXC1, is a regulator of secondary wall formation correlated with the TDIF-PXY/TDR-WOX4 signaling pathway

BMC Plant Biol. 2013 Jul 1:13:94. doi: 10.1186/1471-2229-13-94.

Abstract

Background: Although a number of leucine-rich repeat receptor-like kinase-encoding genes (LRR-RLKs) have been identified in plants, a functional role has been determined for only a few. Recent studies have demonstrated that an LRR-RLK, PXY/TDR, is important for the process of secondary vascular development. Other studies have indicated that PXY/TDR is unlikely to be the sole LRR-RLK involved in this complex process.

Results: In this study, in silico analyses led to the identification of three Arabidopsis LRR-RLK genes (PXY-correlated; PXC1, 2, 3) with transcript accumulation profiles that correlated strongly with several key regulators of vascular development, including PXY/TDR, HB-8, REV, and CLE41. Expression profiling using qPCR and promoter:reporter lines indicated that all three PXC genes are associated with the vasculature. One in particular, PXC1 (At2g36570), had a strong correlation with PXY/TDR. Shifting pxc1 mutants from long-days to short-days showed that loss of the gene led to a dramatic reduction in secondary wall formation in xylem fibers. Transcript analysis of mutants for a variety of secondary cell wall-associated genes, including PXY/TDR indicated that the pathways mediated by PXC1 connect with those mediated by the TDIF-PXY/TDR-WOX4 system.

Conclusions: The data indicate that the LRR-RLK, PXC1 is involved in secondary cell wall formation in xylem fibers. Whereas further study is needed to identify the ligands and mode of action of the PXC1 protein, it is clear from this work that similarly to the shoot apical meristem (SAM), secondary vascular development requires contributions from a number of LRR-RLKs.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Arabidopsis / enzymology
  • Arabidopsis / genetics
  • Arabidopsis / metabolism*
  • Arabidopsis Proteins / genetics
  • Arabidopsis Proteins / metabolism*
  • Cell Wall / genetics
  • Cell Wall / metabolism*
  • Gene Expression Regulation, Plant*
  • Homeodomain Proteins / genetics
  • Homeodomain Proteins / metabolism
  • Oligopeptides / genetics
  • Oligopeptides / metabolism
  • Protein Kinases / genetics
  • Protein Kinases / metabolism
  • Receptor Protein-Tyrosine Kinases / genetics
  • Receptor Protein-Tyrosine Kinases / metabolism*
  • Signal Transduction*
  • Xylem / genetics
  • Xylem / metabolism*

Substances

  • Arabidopsis Proteins
  • Homeodomain Proteins
  • Oligopeptides
  • WOX4 protein, Arabidopsis
  • tracheary element differentiation inhibitory factor, Arabidopsis
  • Protein Kinases
  • Receptor Protein-Tyrosine Kinases
  • At2g36570 protein, Arabidopsis
  • PXY protein, Arabidopsis