Streptococcus pyogenes is the most common bacterial pathogen causing pharyngotonsillitis, and also can lead to diseases such as otitis media, impetigo, necrotizing fasciitis, bacteremia, sepsis and toxic shock-like syndrome. M protein encoded by emm gene is an important virulence factor of S.pyogenes and it is used for genotyping in epidemiological studies. The aims of this study were to determine the M protein types of group A streptococci (GAS) by using emm gene sequence analysis method, to compare the M types in terms of analogy with the vaccine in development and to determine the antibiotic susceptibilities of the isolates. A total of 35 GAS strains isolated from various clinical specimens in our laboratory were included in the study. Strains growing in blood culture were considered as invasive, strains growing in throat and abscess cultures were considered as non-invasive. The isolates have been identified by conventional methods and 16S rRNA sequence analysis at species level. emm genotyping of strains identified as S.pyogenes, was performed by PCR method as proposed by the CDC. Amplicons were obtained and sequenced in 23 out of 35 isolates. The results were compared with CDC emm sequence database. Antibiotic susceptibility of the isolates was performed by agar dilution method and evaluated as recommended by CLSI. Twenty-three out of 35 isolates could be typed and 15 different emm genotypes were detected. The most common emm types were emm1 (22%), emm89 (13%), emm18 (9%) and emm19 (9%). The detection rate of other emm types (emm5, 12, 14, 17, 26, 29, 37, 74, 78, 92, 99) was 47%. Types emm1, 12, 19, 74, 89 and 99 were observed in strains isolated from blood cultures. It was detected that nine of the 15 (60%) emm types are within the contents of 26 valent vaccine (emm 1, 5, 12, 14, 18, 19, 29, 89, 92). It was also observed that 17 (74%) of the 23 cases were infected by vaccine types and the four emm types (emm1, 12, 19, 89) identified in blood samples were among the vaccine types. All of the strains were found susceptible to penicillin, ampicillin, erythromycin, lincomycin, gentamicin, chloramphenicol, vancomycin and linezolid, however six isolates were resistant to levofloxacin (MIC= 4 and 16 µg/ml) and one isolate was resistant to tetracycline (MIC= 16 µg/ml). In conclusion, this preliminary local study with limited number of invasive and non-invasive S.pyogenes isolates, emphasized the need for larger scale multi-center studies to determine the analogy and efficacy of the vaccine in development.