Therapeutic augmentation of collateral artery growth (arteriogenesis) is of tremendous clinical interest. Since monocytes home to areas of arteriogenesis and create a local arteriogeneic milieu by secreting a wide range of growth factors, we followed the idea of utilizing these cells for augmentation of collateral growth. For that purpose, we adoptively transferred both syngeneic (same strain) and allogeneic (different strain) bone marrow derived monocytes (BMDMs) into balb/c mice 24 h after femoral artery ligation. Restoration of hind-limb perfusion was determined by Laser Doppler Perfusion Imaging and histological workup. While syngeneic cell transplantation did not augment arteriogenesis in comparison to non-transplanted animals (PI = 0.56 ± 0.06 vs. 0.48 ± 0.09, respectively, ns), allogeneic monocytes massively promoted the collateralization (PI = 0.85 ± 0.14, p < 0.001). Homed monocytes were visualized near growing collateral vessels by staining the cells with the lipophil fluorochrome DiI prior to transplantation. To analyze whether the effect of allogeneic BMDM transplantations is due to local inflammation triggered by a host-versus-graft reaction, transplant recipients were pre-treated with the immunosuppressive drug cyclosporine A, which completely prevented the effect of allogeineic monocyte transplantation (PI = 0.45 ± 0.06, p < 0.001). Here, we have demonstrated murine allogeneic monocytes to be an attractive way to trigger local inflammatory responses near growing collateral vessels and stimulate their adaption, overcoming the endogenous restriction of collateral vessel growth.
Keywords: Monocyte; cell transplantation; collateral circulation; immune system; vascular biology.