Actin has well-established functions in the cytoplasm, but its roles in the nucleus remain poorly defined. Here, by studying the nuclear actin-containing yeast INO80 chromatin remodeling complex, we provide genetic and biochemical evidence for a role of monomeric actin in INO80 chromatin remodeling. We demonstrate that, in contrast to cytoplasmic actin, nuclear actin is present as a monomer in the INO80 complex, and its barbed end is not accessible for polymerization. We identify an actin mutation in subdomain 2 affecting in vivo nuclear functions and reducing the chromatin remodeling activity of the INO80 complex in vitro. Notably, the highly conserved subdomain 2 at the pointed end of actin contributes to the interaction of INO80 with chromatin. Our results establish an evolutionarily conserved function of nuclear actin in its monomeric form and suggest that nuclear actin can utilize a fundamentally distinct mechanism from that of cytoplasmic actin.