Background: Fusarium head blight (FHB), caused mainly by Fusarium graminearum (Fg) Schwabe (teleomorph: Gibberellazeae Schwble), brings serious damage to wheat production. Chinese wheat landrace Wangshuibai is one of the most important resistance sources in the world. The knowledge of mechanism underlying its resistance to FHB is still limited.
Results: To get an overview of transcriptome characteristics of Wangshuibai during infection by Fg, a high-throughput RNA sequencing based on next generation sequencing (NGS) technology (Illumina) were performed. Totally, 165,499 unigenes were generated and assigned to known protein databases including NCBI non-redundant protein database (nr) (82,721, 50.0%), Gene Ontology (GO) (38,184, 23.1%), Swiss-Prot (50,702, 30.6%), Clusters of orthologous groups (COG) (51,566, 31.2%) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) (30,657, 18.5%), as determined by Blastx search. With another NGS based platform, a digital gene expression (DGE) system, gene expression in Wangshuibai and its FHB susceptible mutant NAUH117 was profiled and compared at two infection stages by inoculation of Fg at 24 and 48 hour, with the aim of identifying genes involved in FHB resistance.
Conclusion: Pathogen-related proteins such as PR5, PR14 and ABC transporter and JA signaling pathway were crucial for FHB resistance, especially that mediated by Fhb1. ET pathway and ROS/NO pathway were not activated in Wangshuibai and may be not pivotal in defense to FHB. Consistent with the fact that in NAUH117 there presented a chromosome fragment deletion, which led to its increased FHB susceptibility, in Wangshuibai, twenty out of eighty-nine genes showed changed expression patterns upon the infection of Fg. The up-regulation of eight of them was confirmed by qRT-PCR, revealing they may be candidate genes for Fhb1 and need further functional analysis to confirm their roles in FHB resistance.