Brain-derived neurotrophic factor (BDNF) within the striatum is part of a homeostatic pathway regulating alcohol consumption. Memantine, a non-competitive antagonist of N-methyl-D-aspartate receptors, induces expression of BDNF in several brain regions including the striatum. We hypothesized that memantine could decrease ethanol (EtOH) consumption via activation of the BNDF signalling pathway. Effects of memantine were evaluated in Long-Evans rats self-administering moderate or high amounts of EtOH 6, 30 and 54 hours after an acute injection (12.5 and 25 mg/kg). Motivation to consume alcohol was investigated through a progressive ratio paradigm. The possible role for BDNF in the memantine effect was tested by blockade of the TrkB receptor using the pharmacological agent K252a and by the BDNF scavenger TrkB-Fc. Candidate genes expression was also assessed by polymerase chain reaction array 4 and 28 hours after memantine injection. We found that memantine decreased EtOH self-administration and motivation to consume EtOH 6 and 30 hours post-injection. In addition, we found that inhibition or blockade of the BDNF signalling pathway prevented the early, but not the delayed decrease in EtOH consumption induced by memantine. Finally, Bdnf expression was differentially regulated between the early and delayed timepoints. These results demonstrate that an acute injection of memantine specifically reduces EtOH self-administration and motivation to consume EtOH for at least 30 hours. Moreover, we showed that BDNF was responsible for the early effect, but that the delayed effect was BDNF-independent.
Keywords: Alcohol consumption; BDNF; memantine; prefrontal cortex; self-administration; striatum.
© 2013 The Authors, Addiction Biology © 2013 Society for the Study of Addiction.