Context-specific microRNA function in developmental complexity

J Mol Cell Biol. 2013 Apr;5(2):73-84. doi: 10.1093/jmcb/mjt004. Epub 2013 Jan 28.

Abstract

Since their discovery, microRNAs (miRNA) have been implicated in a vast array of biological processes in animals, from fundamental developmental functions including cellular proliferation and differentiation, to more complex and specialized roles such as long-term potentiation and synapse-specific modifications in neurons. This review recounts the history behind this paradigm shift, which has seen small non-coding RNA molecules coming to the forefront of molecular biology, and introduces their role in establishing developmental complexity in animals. The fundamental mechanisms of miRNA biogenesis and function are then considered, leading into a discussion of recent discoveries transforming our understanding of how these molecules regulate gene network behaviour throughout developmental and pathophysiological processes. The emerging complexity of this mechanism is also examined with respect to the influence of cellular context on miRNA function. This discussion highlights the absolute imperative for experimental designs to appreciate the significance of context-specific factors when determining what genes are regulated by a particular miRNA. Moreover, by establishing the timing, location, and mechanism of these regulatory events, we may ultimately understand the true biological function of a specific miRNA in a given cellular environment.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Gene Expression Regulation / physiology*
  • Humans
  • Long-Term Potentiation / physiology*
  • MicroRNAs / metabolism*
  • Neurons / cytology
  • Neurons / metabolism*

Substances

  • MicroRNAs