Objective: The present study was performed to investigate in a model of malignant hypertension if the antihypertensive actions of soluble epoxide hydrolase (sEH) inhibition are nitric oxide (NO)-dependent.
Methods: ANG II-dependent malignant hypertension was induced through dietary administration for 3 days of the natural xenobiotic indole-3-carbinol (I3C) in Cyp1a1-Ren-2 transgenic rats. Blood pressure (BP) was monitored by radiotelemetry and treatment with the sEH inhibitor [cis-4-[4-(3-adamantan-1-yl-ureido)-cyclohexyl-oxy]-benzoic acid (c-AUCB)] was started 48 h before administration of the diet containing I3C. In separate groups of rats, combined administration of the sEH inhibitor and the nonspecific NO synthase inhibitor [Nω-nitro-L-arginine methyl ester (L-NAME)] on the course of BP in I3C-induced and noninduced rats were evaluated. In addition, combined blockade of renin-angiotensin system (RAS) was superimposed on L-NAME administration in separate groups of rats. After 3 days of experimental protocols, the rats were prepared for renal functional studies and renal concentrations of epoxyeicosatrienoic acids (EETs) and their inactive metabolites dihydroxyeicosatrienoic acids (DHETEs) were measured.
Results: Treatment with c-AUCB increased the renal EETs/DHETEs ratio, attenuated the increases in BP, and prevented the decreases in renal function and the development of renal damage in I3C-induced Cyp1a1-Ren-2 rats. The BP lowering and renoprotective actions of the treatment with the sEH inhibitor c-AUCB were completely abolished by concomitant administration of L-NAME and not fully rescued by double RAS blockade without altering the increased EETs/DHETEs ratio.
Conclusion: Our current findings indicate that the antihypertensive actions of sEH inhibition in this ANG II-dependent malignant form of hypertension are dependent on the interactions of endogenous bioavailability of EETs and NO.