Only few small RNAs (sRNAs) have been characterized in Mycobacterium tuberculosis and their role in regulatory networks is still poorly understood. Here we report a genome-wide characterization of sRNAs in M. tuberculosis integrating experimental and computational analyses. Global RNA-seq analysis of exponentially growing cultures of M. tuberculosis H37Rv had previously identified 1373 sRNA species. In the present report we show that 258 (19%) of these were also identified by microarray expression. This set included 22 intergenic sRNAs, 84 sRNAs mapping within 5'/3' UTRs, and 152 antisense sRNAs. Analysis of promoter and terminator consensus sequences identified sigma A promoter consensus sequences for 121 sRNAs (47%), terminator consensus motifs for 22 sRNAs (8.5%), and both motifs for 35 sRNAs (14%). Additionally, 20/23 candidates were visualized by Northern blot analysis and 5' end mapping by primer extension confirmed the RNA-seq data. We also used a computational approach utilizing functional enrichment to identify the pathways targeted by sRNA regulation. We found that antisense sRNAs preferentially regulated transcription of membrane-bound proteins. Genes putatively regulated by novel cis-encoded sRNAs were enriched for two-component systems and for functional pathways involved in hydrogen transport on the membrane.