Progesterone-inducible cytokeratin 5-positive cells in luminal breast cancer exhibit progenitor properties

Horm Cancer. 2013 Feb;4(1):36-49. doi: 10.1007/s12672-012-0127-5. Epub 2012 Nov 27.

Abstract

Progestins play a deleterious role in the onset of breast cancer, yet their influence on existing breast cancer and tumor progression is not well understood. In luminal estrogen receptor (ER)- and progesterone receptor (PR)-positive breast cancer, progestins induce a fraction of cells to express cytokeratin 5 (CK5), a marker of basal epithelial and progenitor cells in the normal breast. CK5(+) cells lose expression of ER and PR and are relatively quiescent, increasing their resistance to endocrine and chemotherapy compared to intratumoral CK5(-)ER(+)PR(+) cells. Characterization of live CK5(+) cells has been hampered by a lack of means for their direct isolation. Here, we describe optical (GFP) and bioluminescent (luciferase) reporter models to quantitate and isolate CK5(+) cells in luminal breast cancer cell lines utilizing the human KRT5 gene promoter and a viral vector approach. Using this system, we confirmed that the induction of GFP(+)/CK5(+) cells is specific to progestins, is dependent on PR, can be blocked by antiprogestins, and does not occur with other steroid hormones. Progestin-induced, fluorescence-activated cell sorting-isolated CK5(+) cells had lower ER and PR mRNA, were slower cycling, and were relatively more invasive and sphere forming than their CK5(-) counterparts in vitro. Repeated progestin treatment and selection of GFP(+) cells enriched for a persistent population of CK5(+) cells, suggesting that this transition can be semi-permanent. These data support that in PR(+) breast cancers, progestins induce a subpopulation of CK5(+)ER(-)PR(-) cells with enhanced progenitor properties and have implications for treatment resistance and recurrence in luminal breast cancer.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Breast Neoplasms / genetics
  • Breast Neoplasms / metabolism
  • Breast Neoplasms / pathology*
  • Cell Line, Tumor
  • Female
  • Flow Cytometry / methods
  • HEK293 Cells
  • Humans
  • Keratin-5 / biosynthesis*
  • Keratin-5 / genetics
  • Keratin-5 / metabolism
  • MCF-7 Cells
  • Neoplastic Stem Cells / drug effects*
  • Neoplastic Stem Cells / metabolism
  • Neoplastic Stem Cells / pathology*
  • Progesterone / pharmacology*
  • Progestins / pharmacology
  • Promoter Regions, Genetic / genetics
  • Receptors, Estrogen / genetics
  • Receptors, Estrogen / metabolism
  • Receptors, Progesterone / genetics
  • Receptors, Progesterone / metabolism

Substances

  • KRT5 protein, human
  • Keratin-5
  • Progestins
  • Receptors, Estrogen
  • Receptors, Progesterone
  • Progesterone