Autophagy as a new therapeutic target in Duchenne muscular dystrophy

Cell Death Dis. 2012 Nov 15;3(11):e418. doi: 10.1038/cddis.2012.159.

Abstract

A resolutive therapy for Duchene muscular dystrophy, a severe degenerative disease of the skeletal muscle, is still lacking. Because autophagy has been shown to be crucial in clearing dysfunctional organelles and in preventing tissue damage, we investigated its pathogenic role and its suitability as a target for new therapeutic interventions in Duchenne muscular dystrophy (DMD). Here we demonstrate that autophagy is severely impaired in muscles from patients affected by DMD and mdx mice, a model of the disease, with accumulation of damaged organelles. The defect in autophagy was accompanied by persistent activation via phosphorylation of Akt, mammalian target of rapamycin (mTOR) and of the autophagy-inhibiting pathways dependent on them, including the translation-initiation factor 4E-binding protein 1 and the ribosomal protein S6, and downregulation of the autophagy-inducing genes LC3, Atg12, Gabarapl1 and Bnip3. The defective autophagy was rescued in mdx mice by long-term exposure to a low-protein diet. The treatment led to normalisation of Akt and mTOR signalling; it also reduced significantly muscle inflammation, fibrosis and myofibre damage, leading to recovery of muscle function. This study highlights novel pathogenic aspects of DMD and suggests autophagy as a new effective therapeutic target. The treatment we propose can be safely applied and immediately tested for efficacy in humans.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Autophagy*
  • Disease Models, Animal
  • Humans
  • Male
  • Mice
  • Mice, Inbred mdx
  • Muscular Dystrophy, Duchenne / genetics
  • Muscular Dystrophy, Duchenne / metabolism
  • Muscular Dystrophy, Duchenne / physiopathology*
  • Muscular Dystrophy, Duchenne / therapy
  • Oncogene Protein v-akt / genetics
  • Oncogene Protein v-akt / metabolism
  • Signal Transduction
  • TOR Serine-Threonine Kinases / genetics
  • TOR Serine-Threonine Kinases / metabolism

Substances

  • MTOR protein, human
  • Oncogene Protein v-akt
  • TOR Serine-Threonine Kinases