Cell-based assays are key tools in drug safety assessment. However, they usually provide only limited information about time-kinetics of a toxic effect and implementing multiple measurements is often complex. To overcome these issues we established an impedance-based approach which is able to differentiate cytostatic from cytotoxic drugs by recording time-kinetics of compound-effects on cells. NIH 3T3 fibroblasts were seeded on xCELLigence® E-plates and impedance was continuously measured over 5 days. The obtained results reflected cytotoxicity and cell proliferation, as confirmed by neutral red uptake in vitro. Based on known toxicants, we established an algorithm able to discriminate cytostatic, cytotoxic and non-toxic compounds based on the shape of the impedance curves. Analyzing impedance curve patterns of additional 37 compounds allowed the identification and differentiation of these distinct effects as results correlated well with previous in vivo findings. We show that impedance-based real-time cell analysis is a convenient tool to characterize and discriminate effects of compounds on cells in a time-dependent and label-free manner. The presented impedance assay could be used to further characterize toxicities observed in vivo or in vitro. Due to the ease of performance it may also be a suitable screening tool.
Copyright © 2012 Elsevier Ltd. All rights reserved.