Artificial neural networks trained to detect viral and phage structural proteins

PLoS Comput Biol. 2012;8(8):e1002657. doi: 10.1371/journal.pcbi.1002657. Epub 2012 Aug 23.

Abstract

Phages play critical roles in the survival and pathogenicity of their hosts, via lysogenic conversion factors, and in nutrient redistribution, via cell lysis. Analyses of phage- and viral-encoded genes in environmental samples provide insights into the physiological impact of viruses on microbial communities and human health. However, phage ORFs are extremely diverse of which over 70% of them are dissimilar to any genes with annotated functions in GenBank. Better identification of viruses would also aid in better detection and diagnosis of disease, in vaccine development, and generally in better understanding the physiological potential of any environment. In contrast to enzymes, viral structural protein function can be much more challenging to detect from sequence data because of low sequence conservation, few known conserved catalytic sites or sequence domains, and relatively limited experimental data. We have designed a method of predicting phage structural protein sequences that uses Artificial Neural Networks (ANNs). First, we trained ANNs to classify viral structural proteins using amino acid frequency; these correctly classify a large fraction of test cases with a high degree of specificity and sensitivity. Subsequently, we added estimates of protein isoelectric points as a feature to ANNs that classify specialized families of proteins, namely major capsid and tail proteins. As expected, these more specialized ANNs are more accurate than the structural ANNs. To experimentally validate the ANN predictions, several ORFs with no significant similarities to known sequences that are ANN-predicted structural proteins were examined by transmission electron microscopy. Some of these self-assembled into structures strongly resembling virion structures. Thus, our ANNs are new tools for identifying phage and potential prophage structural proteins that are difficult or impossible to detect by other bioinformatic analysis. The networks will be valuable when sequence is available but in vitro propagation of the phage may not be practical or possible.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Validation Study

MeSH terms

  • Bacteriophages / genetics
  • Bacteriophages / physiology*
  • Genes, Viral
  • Neural Networks, Computer*
  • Open Reading Frames
  • Viral Proteins / chemistry*

Substances

  • Viral Proteins

Grants and funding

This work was supported by NSF grants DMS-0827278 Undergraduate Biomathematics (awarded to A.M. Segall and P. Salamon) and DEB-1046413 Viral Dark Matter (awarded to F. Rohwer, A.M. Segall, R. Edwards, and A.B. Burgin). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.