Site-resolved measurement of microsecond-to-millisecond conformational-exchange processes in proteins by solid-state NMR spectroscopy

J Am Chem Soc. 2012 Sep 12;134(36):14800-7. doi: 10.1021/ja303591y. Epub 2012 Aug 28.

Abstract

We demonstrate that conformational exchange processes in proteins on microsecond-to-millisecond time scales can be detected and quantified by solid-state NMR spectroscopy. We show two independent approaches that measure the effect of conformational exchange on transverse relaxation parameters, namely Carr-Purcell-Meiboom-Gill relaxation-dispersion experiments and measurement of differential multiple-quantum coherence decay. Long coherence lifetimes, as required for these experiments, are achieved by the use of highly deuterated samples and fast magic-angle spinning. The usefulness of the approaches is demonstrated by application to microcrystalline ubiquitin. We detect a conformational exchange process in a region of the protein for which dynamics have also been observed in solution. Interestingly, quantitative analysis of the data reveals that the exchange process is more than 1 order of magnitude slower than in solution, and this points to the impact of the crystalline environment on free energy barriers.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Models, Molecular
  • Nuclear Magnetic Resonance, Biomolecular*
  • Protein Conformation
  • Proteins / chemistry*
  • Time Factors

Substances

  • Proteins