An antimicrobial polypeptide was purified from an acidified gill extract of Pacific oyster (Crassostrea gigas) by C(18) reversed-phase HPLC. The purified polypeptide had a molecular weight of 8471Da containing 74 amino acid residues. Comparison of the obtained N-terminal sequences with those of others revealed that it was identical to ubiquitin reported from other species and named cgUbiquitin. cgUbiquitin showed broad potent antimicrobial activity against Gram-positive and -negative bacteria including Streptococcus iniae and Vibrio parahemolyticus (minimal effective concentrations, 7.8 and 9.8μg/mL), respectively, without hemolytic activity. The cgUbiquitin cDNA was identified from an expressed sequence tag (EST) library of oyster gill as a precursor form, encoding ubiquitin consisting of 76 amino acids fused to ribosomal protein of S27. Although the cgUbiquitin precursor mRNA was expressed at the intermediate level in the gill, the mRNA was significantly up-regulated at 48h post injection with Vibrio sp. Analysis of the cgUbiquitin C-terminus by carboxypeptidase B treatment and comparison of the retention times revealed that cgUbiquitin lacks the terminal Gly-Gly doublet and ends in an C-terminal Arg residue which might be related to antimicrobial activity. Study of the kinetics of killing and membrane permeabilization showed that this peptide was not membrane permeable and acted through a bacteriostatic process. According to the homology modeling, this peptide is composed of three secondary structural motifs including three α-helices and four β-strands separated by 7 loops regions. Our results indicate that cgUbiquitin might be related to the innate immune defenses in the Pacific oyster and this is the first report for antimicrobial function of ubiquitin isolated from any oyster species.
Copyright © 2012 Elsevier Ltd. All rights reserved.