MicroRNA (miRNA) target hubs are genes that can be simultaneously targeted by a comparatively large number of miRNAs, a class of non-coding RNAs that mediate post-transcriptional gene repression. Although the details of target hub regulation remain poorly understood, recent experiments suggest that pairs of miRNAs can cooperate if their binding sites reside in close proximity. To test this and other hypotheses, we established a novel approach to investigate mechanisms of collective miRNA repression. The approach presented here combines miRNA target prediction and transcription factor prediction with data from the literature and databases to generate a regulatory map for a chosen target hub. We then show how a kinetic model can be derived from the regulatory map. To validate our approach, we present a case study for p21, one of the first experimentally proved miRNA target hubs. Our analysis indicates that distinctive expression patterns for miRNAs, some of which interact cooperatively, fine-tune the features of transient and long-term regulation of target genes. With respect to p21, our model successfully predicts its protein levels for nine different cellular functions. In addition, we find that high abundance of miRNAs, in combination with cooperativity, can enhance noise buffering for the transcription of target hubs.