Background: Recent evidence suggests that acetylcholine acting through muscarinic receptors may play an inhibitory role in the mechanisms that drive the structural changes in the airways called airway remodeling. The novel anticholinergic drug tiotropium bromide, which selectively antagonizes muscarinic receptors, especially the M3 subtype, and is long acting, could be beneficial in attenuating airway remodeling in chronic asthma.
Objective: To investigate the effect of tiotropium bromide on parameters of airway remodeling, including smooth muscle hypertrophy and peribronchial thickening, in a mouse model of chronic asthma.
Methods: To develop the murine models of acute and chronic asthma, BALB/c mice were sensitized and challenged to ovalbumin for 1 and 3 months, respectively. The effect of tiotropium bromide (0.1mM in 50 μL of phosphate-buffered saline) on pulmonary inflammation and remodeling was evaluated. The expression of muscarinic receptors M2 and M3 was analyzed.
Results: In the chronic asthma model, the tiotropium-treated group significantly decreased smooth muscle thickening and peribronchial collagen deposition. As for pulmonary inflammation, the chronic asthma model had a reduction of inflammatory cells and T(H)2 cytokines by tiotropium bromide, but the effects in the asthma acute model were reversed. In the chronic asthma model, expression of the M3 receptor was inhibited and that of the M2 receptor was elevated by the administration of tiotropium bromide.
Conclusion: This study suggests that tiotropium bromide might have an inhibitory effect on airway remodeling in a murine model of chronic asthma. Differential effects on muscarinic receptor subtypes may explain why tiotropium bromide has different effects on acute and chronic asthma.
Copyright © 2012 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.