Knowledge of the properties of white matter fiber tracts isa crucial and necessary step toward a precise understanding of the functional architecture of the living human brain. Previously, this knowledge was severely limited, as it was difficult to visualize these structures or measure their functions in vivo. The HCP has recently generated considerable interest because of its potential to explore connectivity and its relationship with genetics and behavior. For neuroscientists and the lay public alike, the ability to assess, measure, and explore this wealth of layered information concerning how the brain is wired is a much sought after prize.The navigation of the human connectome and the discovery of how it is affected through genetics, and in a range of neurological and psychiatric diseases, have far reaching implications. From a range of ongoing connectomics related activities, the systematic characterization of brain connectedness and the resulting functional aspects of such connectivity will not only realize the work of Ramón y Cajal and others, but will also greatly expand our understanding of the brain, the mind, and what it is to be truly human. The similarities and differences that mark normal diversity will help us to understand variation among people and set the stage to chart genetic influences on typical brain development and decline during aging. What is more, an understanding of how brains might become disordered will shed light on autism, schizophrenia, Alzheimer’s, and other diseases that exact a tremendous and terrible social and economic toll.