Membrane interaction and antibacterial properties of chensinin-1, an antimicrobial peptide with atypical structural features from the skin of Rana chensinensis

Appl Microbiol Biotechnol. 2012 Dec;96(6):1551-60. doi: 10.1007/s00253-012-4148-3. Epub 2012 May 15.

Abstract

Many antimicrobial peptides from amphibian skin have been purified and structurally characterized and may be developed as therapeutic agents. Here we describe the antibacterial properties and membrane interaction of chensinin-1, a cationic arginine/histidine-rich antimicrobial peptide, from the skin secretions of Rana chensinensis. The amino acid composition, sequence, and atypical structure of chensinin-1 differ from other known antimicrobial peptides from amphibian skin. Chensinin-1 exhibited selective antimicrobial activity against Gram-positive bacteria, was inactive against Gram-negative bacteria, and had no hemolytic activity on human erythrocytes. The CD spectra for chensinin-1 indicated that the peptide adopted an aperiodic structure in water and a conformational structure with 20 % β-strands, 8 % α-helices, and the remaining majority of random coils in the trifluoroethanol or SDS solutions. Time-kill kinetics against Gram-positive Bacillus cereus demonstrated that chensinin-1 was rapidly bactericidal at 2× MIC and PAE was found to be >5 h. Chensinin-1 caused rapid and large dye leakage from negatively charged model vesicles. Furthermore, membrane permeation assays on intact B. cereus indicated that chensinin-1 induced membrane depolarization in less than 1 min and followed to damage the integrity of the cytoplasmic membrane and resulted in efflux of molecules from cytoplasma. Hence, the primary target of chensinin-1 action was the cytoplasmic membrane of bacteria. Chensinin-1 was unable to overcome bacterial resistance imposed by the lipopolysaccharide leaflet, the major constituent of the outer membrane of Gram-negative bacteria. Lipopolysaccharide induced oligomerization of chensinin-1, thus preventing its translocation across the outer membrane.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Animals
  • Anti-Bacterial Agents / chemistry*
  • Anti-Bacterial Agents / metabolism
  • Anti-Bacterial Agents / pharmacology*
  • Antimicrobial Cationic Peptides / chemistry*
  • Antimicrobial Cationic Peptides / metabolism
  • Antimicrobial Cationic Peptides / pharmacology*
  • Bacteria / drug effects
  • Bacteria / growth & development
  • Cell Membrane / drug effects*
  • Humans
  • Microbial Sensitivity Tests
  • Molecular Sequence Data
  • Ranidae / genetics
  • Ranidae / metabolism*
  • Skin / chemistry
  • Skin / metabolism*

Substances

  • Anti-Bacterial Agents
  • Antimicrobial Cationic Peptides