Micelles with high in vivo serum stability and intratumor accumulation post intravenous (i.v.) injection are highly desired for promoting chemotherapy. Herein, we finely synthesized and tailored well-defined anti-Her2 antibody Fab fragment conjugated immunomicelles (FCIMs), which showed interesting dual targeting function. The thermosensitive poly(N-isopropylacrylamide-co-N,N-dimethylacrylamide)(118) (PID(118)) shell with volume phase transition temperature (VPTT: 39 °C) and the anchored anti-Her2 Fab moiety contributed to the passive and active targeting, respectively. The doxorubicin (DOX) loading capacity of such FCIMs was successfully increased about 2 times by physically enhanced hydrophobicity of inner reservoir without structural deformation. The cellular uptake and intracellular accumulation of DOX by temperature regulated passive and antibody navigated active targeting was 4 times of Doxil. The cytotoxicity assay against Her2 overexpression gastric cancer cells (N87s) showed that the IC50 of the FCIMs was ≈ 9 times lower than that of Doxil under cooperatively targeting by Fab at T > VPTT. FCIMs showed high serum stability by increasing the corona PID(118) chain density (S(corona)/N(agg)). In vivo tissue distribution was evaluated in Balb/c nude mice bearing gastric cancer. As observed by the IVIS(®) imaging system, the intratumor accumulation of such finely tailored FCIMs system was obviously promoted 24 h post i.v. administration. Due to the high stability and super-targeting, the in vivo xenografted gastric tumor growth was significantly inhibited with relative tumor volume <2 which was much smaller than ≈ 5 of the control. Consequently, such finely tailored FCIMs with anti-Her2 active and temperature regulated passive dual tumor-targeting function show high potent in chemotherapy.
Copyright © 2012 Elsevier Ltd. All rights reserved.