BNP (B-type natriuretic peptide) has been reported to be elevated in preclinical states of vascular damage. To elucidate the relationship between plasma BNP and endothelial function, we have investigated the relationship between BNP and endothelial function in a cohort of subjects comprising healthy subjects as well as at-risk subjects with cardiovascular risk factors. To also clarify the relative contribution of different biological pathways to the individual variation in endothelial function, we have examined the relationship between a panel of multiple biomarkers and endothelial function. A total of 70 subjects were studied (mean age, 58.1±4.6 years; 27% had a history of hypertension and 18% had a history of hypercholesterolaemia). Endothelium-dependent vasodilatation was evaluated by the invasive ACH (acetylcholine)-induced forearm vasodilatation technique. A panel of biomarkers of biological pathways was measured: BNP, haemostatic factors PAI-1 (plasminogen-activator inhibitor 1) and tPA (tissue plasminogen activator), inflammatory markers, including cytokines [hs-CRP (high sensitive C-reactive protein), IL (interleukin)-6, IL-8, IL-18, TNFα (tumour necrosis factor α) and MPO (myeloperoxidase] and soluble adhesion molecules [E-selectin and sCD40 (soluble CD40)]. The median BNP level in the study population was 26.9 pg/ml. Multivariate regression analyses show that age, the total cholesterol/HDL (high-density lipoprotein) ratio, glucose and BNP were independent predictors of endothelial function, and BNP remained an independent predictor (P=0.009) in a binary logistic regression analysis using FBF (forearm blood flow) as a dichotomous variable based on the median value. None of the other plasma biomarkers was independently related to ACH-mediated vasodilatation. In a strategy using several biomarkers to relate to endothelial function, plasma BNP was found to be an independent predictor of endothelial function as assessed by endothelium-dependent vasodilatation in response to ACH.