The N-terminal domain (TD) of the clathrin heavy chain is folded into a seven-bladed β-propeller that projects inward from the polyhedral outer clathrin coat. As the most membrane-proximal portion of assembled clathrin, the TD is a major protein-protein interaction node. Contact with the TD β-propeller occurs through short peptide sequences typically located within intrinsically disordered segments of coat components that usually are elements of the membrane-apposed, inner 'adaptor' coat layer. A huge variation in TD-binding motifs is known and now four spatially discrete interaction surfaces upon the β-propeller have been delineated. An important operational feature of the TD interaction sites in vivo is functional redundancy. The recent discovery that 'pitstop' chemical inhibitors apparently occupy only one of the four TD interaction surfaces, but potently block clathrin-mediated endocytosis, warrants careful consideration of the underlying molecular basis for this inhibition.
© 2012 John Wiley & Sons A/S.