Objective: To assess regions and patterns of brain atrophy in patients with Parkinson disease (PD) with normal cognition (PD-NC), mild cognitive impairment (PD-MCI), and dementia-level cognitive deficits (PDD).
Design: Images were quantified using a region-of-interest approach and voxel-based morphometry analysis. We used a high-dimensional pattern classification approach to delineate brain regions that collectively formed the Spatial Pattern of Abnormalities for Recognition of PDD.
Setting: The Parkinson's Disease and Movement Disorders Center at the University of Pennsylvania.
Subjects: Eighty-four PD patients (61 PD-NC, 12 PD-MCI, and 11 PDD) and 23 healthy control subjects (HCs) underwent magnetic resonance imaging of the brain.
Results: The PD-NC patients did not demonstrate significant brain atrophy compared with HCs. Compared with PD-NC patients, PD-MCI patients had hippocampal atrophy (β = -0.37; P = .001), and PDD patients demonstrated hippocampal (β = -0.32; P = .004) and additional medial temporal lobe atrophy (β = -0.36; P = .003). The PD-MCI patients had a different pattern of atrophy compared with PD-NC patients (P = .04) and a similar pattern to that of PDD patients (P = .81), characterized by hippocampal, prefrontal cortex gray and white matter, occipital lobe gray and white matter, and parietal lobe white matter atrophy. In nondemented PD patients, there was a correlation between memory-encoding performance and hippocampal volume.
Conclusions: Hippocampal atrophy is a biomarker of initial cognitive decline in PD, including impaired memory encoding and storage, suggesting heterogeneity in the neural substrate of memory impairment. Use of a pattern classification approach may allow identification of diffuse regions of cortical gray and white matter atrophy early in the course of cognitive decline.