Background and objective: We report the final results of a pilot clinical trial exploring the safety and feasibility of real-time magnetic resonance-guided laser-induced thermal therapy (MRgLITT) for treatment of resistant focal metastatic intracranial tumors.
Study design: In patients with chemotherapy, whole-brain radiation, and radiosurgery resistant metastatic intracranial tumors, minimally invasive stereotaxic placement of a saline-cooled interstitial fiberoptic laser applicator under local anesthesia was followed by laser irradiation during continuous magnetic resonance imaging (MRI) scanning. A computer workstation extracted real-time temperature-sensitive information for feedback control over laser delivery. A total of 15 metastatic tumors were treated in 7 patients. Patients were followed with physical exam and imaging for 30 months.
Results: In all cases, the procedure was well tolerated, and patients were discharged home within 24 hours. Follow-up imaging at up to 30 months showed an acute increase in apparent lesion volume followed by a gradual and steady decrease. No tumor recurrence within thermal ablation zones was noted. Kaplan-Meier analysis indicated that the median survival was 19.8 months.
Conclusion: Real-time magnetic resonance (MR) guidance of laser-induced thermal therapy (LITT) offers a high level of control. This tool therefore enables a minimally invasive option for destruction and treatment of resistant focal metastatic intracranial tumors. MR-guided LITT appears to provide a safe and potentially effective treatment for recurrent focal metastatic brain disease. A larger phase II and III series would be of interest to quantify potential median survival advantage.
Trial registration: ClinicalTrials.gov NCT00392119.
Copyright © 2011 Wiley Periodicals, Inc.