Hyperkinetic Jak2 tyrosine kinase signaling has been implicated in several hematological disorders, including myeloproliferative neoplasms. Effective Jak2 inhibitors can have significant therapeutic potential. Here, using structure-based virtual screening, we identified a benzothiophene-derived Jak2 inhibitor named A46. We hypothesized that this compound would inhibit Jak2-V617F-mediated pathologic cell growth. To test this, A46 was analyzed for its ability to inhibit recombinant Jak2 protein catalysis; suppress Jak2-mediated pathogenic cell growth in vitro; inhibit the aberrant ex vivo growth of Jak2-V617F-expressing primary human bone marrow cells; and inhibit Jak2-mediated pathogenesis in vivo. To this end, we found that A46 selectively inhibited Jak2-V617F protein when compared to wild-type Jak2 protein. The drug also selectively inhibited the proliferation of Jak2-V617F-expressing cells in both a time- and dose-dependent manner, and this correlated with decreased Jak2 and signal transducers and activators of transcription 5 phosphorylation within treated cells. The Jak2-V617F cell growth inhibition correlated with an induction of cell cycle arrest and promotion of apoptosis. A46 also inhibited the pathologic growth of primary Jak2-V617F-expressing bone marrow cells ex vivo. Lastly, using a mouse model of Jak2-V617F-mediated myeloproliferative neoplasia. A46 significantly reduced the splenomegaly and megakaryocytic hyperplasia in the spleens of treated mice and the levels of interleukin-6 in the plasma. Collectively, our data demonstrate that the benzothiophene-based compound, A46, suppresses Jak2-mediated pathogenesis, thereby making it a potential candidate drug against Jak2-mediated disorders.
Copyright © 2012 ISEH - Society for Hematology and Stem Cells. Published by Elsevier Inc. All rights reserved.