Birth weight and prenatal exposure to polychlorinated biphenyls (PCBs) and dichlorodiphenyldichloroethylene (DDE): a meta-analysis within 12 European Birth Cohorts

Environ Health Perspect. 2012 Feb;120(2):162-70. doi: 10.1289/ehp.1103767. Epub 2011 Oct 13.

Abstract

Objectives: Exposure to high concentrations of persistent organochlorines may cause fetal toxicity, but the evidence at low exposure levels is limited. Large studies with substantial exposure contrasts and appropriate exposure assessment are warranted. Within the framework of the EU (European Union) ENRIECO (ENvironmental Health RIsks in European Birth Cohorts) and EU OBELIX (OBesogenic Endocrine disrupting chemicals: LInking prenatal eXposure to the development of obesity later in life) projects, we examined the hypothesis that the combination of polychlorinated biphenyls (PCBs) and dichlorodiphenyldichloroethylene (DDE) adversely affects birth weight.

Methods: We used maternal and cord blood and breast milk samples of 7,990 women enrolled in 15 study populations from 12 European birth cohorts from 1990 through 2008. Using identical variable definitions, we performed for each cohort linear regression of birth weight on estimates of cord serum concentration of PCB-153 and p,p´-DDE adjusted for gestational age and a priori selected covariates. We obtained summary estimates by meta-analysis and performed analyses of interactions.

Results: The median concentration of cord serum PCB-153 was 140 ng/L (range of cohort medians 20-484 ng/L) and that of p,p´-DDE was 528 ng/L (range of cohort medians 50-1,208 ng/L). Birth weight decreased with increasing cord serum concentration of PCB-153 after adjustment for potential confounders in 12 of 15 study populations. The meta-analysis including all cohorts indicated a birth weight decline of 150 g [95% confidence interval (CI): -250, -50 g] per 1-µg/L increase in PCB-153, an exposure contrast that is close to the range of exposures across the cohorts. A 1-µg/L increase in p,p´-DDE was associated with a 7-g decrease in birth weight (95% CI: -18, 4 g).

Conclusions: The findings suggest that low-level exposure to PCB (or correlated exposures) impairs fetal growth, but that exposure to p,p´-DDE does not. The study adds to mounting evidence that low-level exposure to PCBs is inversely associated with fetal growth.

Publication types

  • Meta-Analysis
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Birth Weight / drug effects*
  • Cohort Studies
  • Dichlorodiphenyl Dichloroethylene / analysis
  • Dichlorodiphenyl Dichloroethylene / blood
  • Dichlorodiphenyl Dichloroethylene / toxicity*
  • Environmental Pollutants / analysis
  • Environmental Pollutants / blood
  • Environmental Pollutants / toxicity*
  • Europe
  • Female
  • Fetal Blood / chemistry
  • Humans
  • Linear Models
  • Male
  • Milk, Human / chemistry
  • Polychlorinated Biphenyls / analysis
  • Polychlorinated Biphenyls / blood
  • Polychlorinated Biphenyls / toxicity*
  • Pregnancy
  • Sex Factors
  • Smoking / adverse effects
  • Young Adult

Substances

  • Environmental Pollutants
  • Dichlorodiphenyl Dichloroethylene
  • Polychlorinated Biphenyls
  • 2,4,5,2',4',5'-hexachlorobiphenyl