Tissue engineering bone-ligament complexes using fiber-guiding scaffolds

Biomaterials. 2012 Jan;33(1):137-45. doi: 10.1016/j.biomaterials.2011.09.057. Epub 2011 Oct 10.

Abstract

Regeneration of bone-ligament complexes destroyed due to disease or injury is a clinical challenge due to complex topologies and tissue integration required for functional restoration. Attempts to reconstruct soft-hard tissue interfaces have met with limited clinical success. In this investigation, we manufactured biomimetic fiber-guiding scaffolds using solid free-form fabrication methods that custom fit complex anatomical defects to guide functionally-oriented ligamentous fibers in vivo. Compared to traditional, amorphous or random-porous polymeric scaffolds, the use of perpendicularly oriented micro-channels provides better guidance for cellular processes anchoring ligaments between two distinct mineralized structures. These structures withstood biomechanical loading to restore large osseous defects. Cell transplantation using hybrid scaffolding constructs with guidance channels resulted in predictable oriented fiber architecture, greater control of tissue infiltration, and better organization of ligament interface than random scaffold architectures. These findings demonstrate that fiber-guiding scaffolds drive neogenesis of triphasic bone-ligament integration for a variety of clinical scenarios.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Cattle
  • Cells, Cultured
  • Fibrinogen / chemistry
  • Fluorescent Antibody Technique
  • Humans
  • Microscopy, Electron, Scanning
  • Periodontal Ligament / cytology
  • Rats
  • Rats, Nude
  • Tissue Engineering / methods*
  • Tissue Scaffolds*
  • X-Ray Microtomography

Substances

  • Fibrinogen