Age-related regional brain T2-relaxation changes in healthy adults

J Magn Reson Imaging. 2012 Feb;35(2):300-8. doi: 10.1002/jmri.22831. Epub 2011 Oct 10.

Abstract

Purpose: To determine normal T2-relaxation values from different brain areas in healthy adults, assess age-related T2-relaxation changes in those sites, and evaluate potential gender-related T2-relaxation value differences.

Materials and methods: We performed proton-density and T2-weighted imaging in 60 healthy adults (male: 38, age range = 31-64 years, mean age ± SD = 46.1 ± 9.3 years; female: 22, age range = 37-66 years, mean age ± SD = 49.5 ± 8.3 years), using a 3.0 Tesla MRI scanner. T2-relaxation values were calculated voxel-by-voxel from proton-density and T2-weighted images, and whole-brain T2-relaxation maps were constructed and normalized to a common space. A set of regions-of-interest were outlined within the basal ganglia, limbic, frontal, parietal, temporal, occipital, thalamic, hypothalamic, cerebellar, and pontine regions using mean background images derived from normalized and averaged T2-weighted images of all individuals, and regional T2-relaxation values were determined from these regions-of-interest and normalized T2-relaxation maps. Pearson's correlations were calculated between T2-relaxation values and age, and male-female differences evaluated with independent-samples t-tests.

Results: T2-relaxation values typically increased with age in multiple brain sites; only a few regions showed declines, including the putamen and ventral pons. Sex-related differences in T2-relaxation values appeared in basal ganglia, frontal, temporal, occipital, and cerebellar regions; males showed higher values over females in these sites.

Conclusion: Establishment of normative adult T2-relaxation values over different brain areas, with age and sex as co-factors, offers baseline values against which disease-related tissue changes can be assessed.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Adult
  • Aged
  • Aging / physiology*
  • Brain Mapping / methods*
  • Female
  • Humans
  • Image Processing, Computer-Assisted / methods
  • Magnetic Resonance Imaging / methods*
  • Male
  • Middle Aged
  • Reference Values
  • Sex Factors