The objective of these studies were to determine the preclinical disposition of the two BRAF inhibitors, G-F and G-C, followed by pharmacokinetic (PK)-pharmacodynamic (PD) modelling to characterize the concentration-efficacy relationship of these compounds in the Colo205 mouse xenograft model. With G-F, the relationship of pERK inhibition to concentration was also characterized. Compounds G-F and G-C were administered to mice, rats and dogs and the pharmacokinetics of G-F and G-C was determined. In addition, using indirect response models the concentration-efficacy relationship was described. The clearance of G-F was low; 0.625 and 4.65 mL/min/kg in rat and dog respectively. Similarly, the clearance of G-C was low in rat and dog, 0.490 and 4.43 mL/min/kg, respectively. Both compounds displayed low volumes of distribution (0.140-0.267 L/kg), resulting in moderate half-lives across species (~2.5 to 4 h). Bioavailability was formulation dependent and decreased with increasing dose. Using the indirect response models, the KC(50) (50% K(max); maximal response) value for tumor growth inhibition for G-F and G-C were 84.5 and 19.2 μM, respectively. The IC(50) for pERK inhibition in Colo205 tumors by G-F was estimated to be 29.2 μM. High exposures of G-F and G-C were required for efficacy. Despite good PK properties of low CL and moderate half-life, limitations in obtaining exposures adequate for safety testing in rat and dog resulted in development challenges.