This paper reports synthesis and photobiological properties of a novel chlorin photosensitizer BCPD-18MA. Cytotoxicity, cellular uptake, subcellular location, biodistribution, photodynamic therapy (PDT) efficiency, cell apoptosis as well as histological analysis of the liposomal-delivered BCPD-18MA (L-BCPD-18MA) was studied using mammary adenocarcinoma MDA-MB-231 cells and Lewis lung carcinoma (LLC) implanted in C57BL/6 mice as experimental models. The results showed that L-BCPD-18 was incorporated rapidly into MDA-MB-231 cells and localized partially in mitochondria. L-BCPD-18 induced cell apoptosis by PDT. In addition, biodistribution of L-BCPD-18MA in LLC-bearing mice demonstrated a fast clearance rate of the drug and good skin-related tumor selectivity. Finally, entrapment of BCPD-18 into liposomes resulted in a dramatic impairment of dark toxicity and a notable improvement of PDT antitumor efficacy in vitro. Compared with liposomal-delivered BPDMA (L-BPDMA), L-BCPD-18MA exhibited low dark toxicity and high PDT efficiency on MDA-MB-231 cells. The photodynamic efficacy of L-BCPD-18MA on LLC-bearing mice is comparable to that of L-BPDMA, implying that L-BCPD-18MA is a potential antitumor candidate for PDT.
Copyright © 2011 Elsevier Ltd. All rights reserved.