Lung deflation and oxygen pulse in COPD: results from the NETT randomized trial

Respir Med. 2012 Jan;106(1):109-19. doi: 10.1016/j.rmed.2011.07.012. Epub 2011 Aug 16.

Abstract

Background: In COPD patients, hyperinflation impairs cardiac function. We examined whether lung deflation improves oxygen pulse, a surrogate marker of stroke volume.

Methods: In 129 NETT patients with cardiopulmonary exercise testing (CPET) and arterial blood gases (ABG substudy), hyperinflation was assessed with residual volume to total lung capacity ratio (RV/TLC), and cardiac function with oxygen pulse (O(2) pulse=VO(2)/HR) at baseline and 6 months. Medical and surgical patients were divided into "deflators" and "non-deflators" based on change in RV/TLC from baseline (∆RV/TLC). We defined deflation as the ∆RV/TLC experienced by 75% of surgical patients. We examined changes in O(2) pulse at peak and similar (iso-work) exercise. Findings were validated in 718 patients who underwent CPET without ABGs.

Results: In the ABG substudy, surgical and medical deflators improved their RV/TLC and peak O(2) pulse (median ∆RV/TLC -18.0% vs. -9.3%, p=0.0003; median ∆O(2) pulse 13.6% vs. 1.8%, p=0.12). Surgical deflators also improved iso-work O(2) pulse (0.53 mL/beat, p=0.04 at 20 W). In the validation cohort, surgical deflators experienced a greater improvement in peak O(2) pulse than medical deflators (mean 18.9% vs. 1.1%). In surgical deflators improvements in O(2) pulse at rest and during unloaded pedaling (0.32 mL/beat, p<0.0001 and 0.47 mL/beat, p<0.0001, respectively) corresponded with significant reductions in HR and improvements in VO(2). On multivariate analysis, deflators were 88% more likely than non-deflators to have an improvement in O(2) pulse (OR 1.88, 95% CI 1.30-2.72, p=0.0008).

Conclusion: In COPD, decreased hyperinflation through lung volume reduction is associated with improved O(2) pulse.

Publication types

  • Randomized Controlled Trial
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Aged
  • Blood Gas Analysis
  • Cohort Studies
  • Exercise Test
  • Female
  • Forced Expiratory Volume
  • Humans
  • Lung / metabolism
  • Lung / pathology
  • Lung / physiopathology*
  • Male
  • Middle Aged
  • Multivariate Analysis
  • Oxygen Consumption*
  • Pneumonectomy*
  • Pulmonary Disease, Chronic Obstructive / metabolism
  • Pulmonary Disease, Chronic Obstructive / pathology
  • Pulmonary Disease, Chronic Obstructive / physiopathology*
  • Stroke Volume
  • Total Lung Capacity