Background and objective: Hyperdopaminergic signaling and an upregulated brain arachidonic acid (AA) cascade may contribute to bipolar disorder (BD). Lithium and carbamazepine, FDA-approved for the treatment of BD, attenuate brain dopaminergic D(2)-like (D(2), D(3), and D(4)) receptor signaling involving AA when given chronically to awake rats. We hypothesized that valproate (VPA), with mood-stabilizing properties, would also reduce D(2)-like-mediated signaling via AA.
Methods: An acute dose of quinpirole (1 mg/kg) or saline was administered to unanesthetized rats that had been treated for 30 days with a therapeutically relevant dose of VPA (200 mg/kg/day) or vehicle. Regional brain AA incorporation coefficients, k*, and incorporation rates, J(in), markers of AA signaling and metabolism, were measured by quantitative autoradiography after intravenous [1-(14)C]AA infusion. Whole brain concentrations of prostaglandin (PG)E(2) and thromboxane (TX)B(2) also were measured.
Results: Quinpirole compared to saline significantly increased k* in 40 of 83 brain regions, and increased brain concentrations of PGE(2) in chronic vehicle-treated rats. VPA treatment by itself reduced concentrations of plasma unesterified AA and whole brain PGE(2) and TXB(2), and blocked the quinpirole-induced increments in k* and PGE(2).
Conclusion: These results further provide evidence that mood stabilizers downregulate brain dopaminergic D(2)-like receptor signaling involving AA.
Published by Elsevier Ltd.