RNA editing by adenosine deamination, catalyzed by adenosine deaminases acting on RNA (ADAR), is a post-transcriptional modification that contributes to transcriptome and proteome diversity and is widespread in mammals. Here we administer a bioinformatics search strategy to the human and mouse genomes to explore the landscape of A-to-I RNA editing. In both organisms we find evidence for high excess of A/G-type discrepancies (inosine appears as a guanosine in cloned cDNA) at non-polymorphic, non-synonymous codon sites over other types of discrepancies, suggesting the existence of several thousand recoding editing sites in the human and mouse genomes. We experimentally validate recoding-type A-to-I RNA editing in a number of human genes with high scoring positions including the coatomer protein complex subunit alpha (COPA) as well as cyclin dependent kinase CDK13.
Copyright © 2011 Elsevier Inc. All rights reserved.