Background: Glioblastoma multiforme (GBM) tends to occur between the ages of 45 and 70. This relatively early onset and its poor prognosis make the impact of GBM on public health far greater than would be suggested by its relatively low frequency. Tissue and blood samples have now been collected for a number of populations, and predisposing alleles have been sought by several different genome-wide association (GWA) studies. The Cancer Genome Atlas (TCGA) at NIH has also collected a considerable amount of data. Because of the low concordance between the results obtained using different populations, only 14 predisposing single nucleotide polymorphism (SNP) candidates in five genomic regions have been replicated in two or more studies. The purpose of this paper is to present an improved approach to biomarker identification.
Methods: Association analysis was performed with control of population stratifications using the EIGENSTRAT package, under the null hypothesis of "no association between GBM and control SNP genotypes," based on an additive inheritance model. Genes that are strongly correlated with identified SNPs were determined by linkage disequilibrium (LD) or expression quantitative trait locus (eQTL) analysis. A new approach that combines meta-analysis and pathway enrichment analysis identified additional genes.
Results: (i) A meta-analysis of SNP data from TCGA and the Adult Glioma Study identifies 12 predisposing SNP candidates, seven of which are reported for the first time. These SNPs fall in five genomic regions (5p15.33, 9p21.3, 1p21.2, 3q26.2 and 7p15.3), three of which have not been previously reported. (ii) 25 genes are strongly correlated with these 12 SNPs, eight of which are known to be cancer-associated. (iii) The relative risk for GBM is highest for risk allele combinations on chromosomes 1 and 9. (iv) A combined meta-analysis/pathway analysis identified an additional four genes. All of these have been identified as cancer-related, but have not been previously associated with glioma. (v) Some SNPs that do not occur reproducibly across populations are in reproducible (invariant) pathways, suggesting that they affect the same biological process, and that population discordance can be partially resolved by evaluating processes rather than genes.
Conclusion: We have uncovered 29 glioma-associated gene candidates; 12 of them known to be cancer related (p = 1. 4 × 10-6), providing additional statistical support for the relevance of the new candidates. This additional information on risk loci is potentially important for identifying Caucasian individuals at risk for glioma, and for assessing relative risk.