Evaluation of a second-generation self-expanding variable-porosity flow diverter in a rabbit elastase aneurysm model

AJNR Am J Neuroradiol. 2011 Sep;32(8):1399-407. doi: 10.3174/ajnr.A2548. Epub 2011 Jul 14.

Abstract

Background and purpose: The self-expanding V-POD is a second-generation flow-diverting device with a low-porosity PTFE patch on a self-expanding microstent. The authors evaluated this device for the treatment of elastase-induced aneurysms in rabbits.

Materials and methods: Three V-POD types (A, circumferential patch closed-cell stent [n = 9]; B, asymmetric patch closed-cell stent [n = 7]; and C, asymmetric patch open-cell stent [n = 4]) were evaluated by using angiography, conebeam micro-CT, histology, and SEM. Aneurysm flow modifications were expressed in terms of immediate poststent/prestent ratios of maximum CA volume entering the aneurysm dome tracked on procedural angiograms. Flow modifications were correlated with 4 weeks' follow-up angiographic, micro-CT, histologic, and SEM results.

Results: Mechanical stent-deployment difficulties in 4 aneurysms (1 type A; 3 type B) led to suboptimal results and exclusion from analysis. Of the remaining 16 aneurysms, 4-week post-treatment angiograms showed no aneurysm filling in 10 (63%), 3 (∼19%) had no filling with a small remnant neck, and 3 (∼19%) had <0.25 filling. Successfully treated aneurysms (n = 16) demonstrated an immediate poststent/prestent CA maximum volume ratio of 0.13 ± 0.18% (0.0%-0.5%). Favorable contrast-flow modification on immediate angiography after deployment correlated significantly with aneurysm occlusion on follow-up angiography, micro-CT, and histology. The occlusion percentage derived from micro-CT was 96 ± 6.8%. Histology indicated advanced healing (grade ≥3) in the aneurysm dome in 13 of 16 cases. SEM revealed 15 of 16 stents in an advanced state of endothelialization.

Conclusions: This study showed the feasibility and effectiveness of V-POD for aneurysm healing in a rabbit elastase model.

Publication types

  • Evaluation Study
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Disease Models, Animal
  • Equipment Design
  • Intracranial Aneurysm / chemically induced
  • Intracranial Aneurysm / surgery*
  • Pancreatic Elastase / administration & dosage
  • Porosity
  • Rabbits
  • Stents*

Substances

  • Pancreatic Elastase