Background and objectives: MicroRNAs (miRNAs) are small ribonucleotides regulating gene expression. MicroRNAs are present in the blood in a remarkably stable form. We tested whether circulating miRNAs in the plasma of critically ill patients with acute kidney injury (AKI) at the inception of renal replacement therapy are deregulated and may predict survival.
Design, setting, participants, & measurements: We profiled miRNAs using RNA isolated from the plasma of patients with AKI and healthy controls. The results were validated in 77 patients with acute kidney injury, 30 age-matched healthy controls, and 18 critically ill patients with acute myocardial infarction by quantitative real-time PCR.
Results: Circulating levels of miR-16 and miR-320 were downregulated in the plasma of kidney injury AKI patients, whereas miR-210 was upregulated compared with healthy controls (all P < 0.0001) and disease controls (miR-210 and miR-16: P < 0.0001; miR-320: P = 0.03). Cox regression (P < 0.05) and Kaplan-Meier curve analysis (P = 0.03) revealed miR-210 as an independent and powerful predictor of 28-day survival.
Conclusions: Circulating miRNAs are altered in patients with kidney injury AKI. MiR-210 predicts mortality in this patient cohort and may serve as a novel biomarker AKI reflecting pathophysiological changes on a cellular level.