The diversity of archaea and bacteria was investigated in ten hot springs (elevation >4600 m above sea level) in Central and Central-Eastern Tibet using 16S rRNA gene phylogenetic analysis. The temperature and pH of these hot springs were 26-81°C and close to neutral, respectively. A total of 959 (415 and 544 for bacteria and archaea, respectively) clone sequences were obtained. Phylogenetic analysis showed that bacteria were more diverse than archaea and that these clone sequences were classified into 82 bacterial and 41 archaeal operational taxonomic units (OTUs), respectively. The retrieved bacterial clones were mainly affiliated with four known groups (i.e., Firmicutes, Proteobacteria, Cyanobacteria, Chloroflexi), which were similar to those in other neutral-pH hot springs at low elevations. In contrast, most of the archaeal clones from the Tibetan hot springs were affiliated with Thaumarchaeota, a newly proposed archaeal phylum. The dominance of Thaumarchaeota in the archaeal community of the Tibetan hot springs appears to be unique, although the exact reasons are not yet known. Statistical analysis showed that diversity indices of both archaea and bacteria were not statistically correlated with temperature, which is consistent with previous studies.