Objective: Plant sterols (sitosterol, campesterol, stigmasterol and brassicasterol) are solely dietary-derivable sterols that are structurally very similar to cholesterol. In contrast to peripheral cholesterol, plant sterols can cross the blood-brain barrier and accumulate within mammalian brain. As an impaired function of the cerebrospinal fluid (CSF)-blood barrier is linked to neurodegenerative disorders, i.e. Alzheimer's disease (AD), we investigated whether this results in altered plant sterol concentrations in CSF.
Method: Applying gas chromatography/mass spectrometry analysis, plant sterol concentrations were measured in plasma and CSF of patients with AD (n = 67) and controls (n = 29). Age, gender, plasma-to-CSF albumin ratio, CSF Aβ(42) , CSF pTau, APOE4 genotype, and serum creatinine were applied as covariates in the statistical analysis for individual plant sterols in order to compare plasma and CSF plant sterol concentrations between patients with AD and controls.
Results: Albumin quotient was a consistent predictor in CSF for cholesterol and methyl plant sterols campesterol and brassicasterol. Comparison of lipid parameters per diagnosis based on relevant predictors revealed significantly lower concentrations of brassicasterol (P < 0.001) in CSF of patients with AD. Binary logistic regression analysis revealed that brassicasterol improved the predictive value when added to pTau and Aβ42 in a biomarker model.
Conclusion: Brassicasterol might be a relevant additional biomarker in AD.
© 2011 John Wiley & Sons A/S.