This study used PCR-RFLP to investigate the genetic variability of pmp-encoding genes from fifty-two Chlamydophila abortus (C. abortus) strains originating from abortion cases from various geographical regions and host species. Six primer pairs were used to PCR-amplify DNA fragments encoding eighteen pmps. PCR products were digested using four restriction endonucleases and Bayesian methodologies were used to compare RFLP profiles and assign strains to a RFLP genotype. Strains could be assigned to 2 genotypes in the region encoding pmp18D, 3 genotypes in the regions encoding pmp1A-pmp2B, pmp3E-pmp6H and pmp11G-pmp15G, 4 genotypes in the region encoding pmp7G-pmp10G and 5 genotypes in the region encoding pmp16G-pmp17G. In all regions, the majority of strains (88.4-96.1%) had the same genotype as the reference strain S26/3. No correlation could be made between genotype, host species or geographical origin except for the two variant Greek strains, LLG and POS, which formed a discrete genotype in all pmp-encoding regions except pmp18D. Relative rates of evolution calculated for each pmp-encoding gene locus suggest that differing selective pressures and functional constraints may exist on C. abortus polymorphic membrane proteins. These findings suggest that although intraspecies heterogeneity of pmp-encoding genes in C. abortus is low, the sequence heterogeneity should be an important consideration when using pmps as the basis for novel diagnostics or vaccine development.
Copyright © 2011 Elsevier B.V. All rights reserved.