Cross section and parity-violating spin asymmetries of W± boson production in polarized p + p collisions at sqrt[s] = 500 GeV

Phys Rev Lett. 2011 Feb 11;106(6):062001. doi: 10.1103/PhysRevLett.106.062001. Epub 2011 Feb 11.

Abstract

Large parity-violating longitudinal single-spin asymmetries A(L)(e+) = -0.86(-0.14) (+0.30) and A(L)(e-) = 0.88(-0.71) (+0.12) are observed for inclusive high transverse momentum electrons and positrons in polarized p+p collisions at a center-of-mass energy of sqrt[s] = 500 GeV with the PHENIX detector at RHIC. These e± come mainly from the decay of W± and Z0 bosons, and their asymmetries directly demonstrate parity violation in the couplings of the W± to the light quarks. The observed electron and positron yields were used to estimate W± boson production cross sections for the e± channels of σ(pp → W+ X) × BR(W+ → e+ ν(e)) = 144.1 ± 21.2(stat)(-10.3) (+3.4) (syst) ± 21.6(norm) pb, and σ(pp → W- X) × BR(W- → e- ν[over ¯](e)) = 31.7 ± 12.1(stat)(-8.2) (+10.1) (syst) ± 4.8(norm) pb.